Poles of Eisenstein Series

Riley Moriss Superviser: Chenyan Wu

Expectations

Thesis: Several computations of <u>constant terms</u> of <u>interesting functions</u> to investigate their poles.

Talk:

- Explain what an interesting function is.
- Explain what a constant term is.
- Explain how constant terms are related to the poles of the functions.
- Explain how L-functions arise in constant terms of Eisenstein series.

Expectations

Thesis: Several computations of <u>constant terms</u> of <u>interesting functions</u> to investigate their poles.

Talk: An example of part of the theory.

Everything is over the field ${\mathbb Q}$. p is a prime. The finite adeles are

$$\mathbb{A}_{\mathrm{fin}} := \prod_{p}' \mathbb{Q}_{p} := \{(x_p)_p \in \prod_{p} \mathbb{Q}_{p} : x_p \in \mathbb{Z}_{p} \text{ all but finitely many } p\}$$

The adeles are

 $\mathbb{A} \ := \ \mathbb{R} \times \mathbb{A}_{\mathrm{fin}}$

Algebraic Groups

 ${\boldsymbol{\mathsf{G}}}=\operatorname{GL}_3:\operatorname{Alg}_{\mathbb Q}\to\operatorname{Groups}$

 $R \mapsto 3 \times 3$ invertible matrices with R entries.

Decomposing Algebraic Groups

$$G(\mathbb{A}) = P(\mathbb{A})K,$$

$$\begin{aligned} & \mathcal{K} = \mathcal{O}_3(\mathbb{R}) \times \prod_{\rho} \mathrm{GL}_3(\mathbb{Z}_{\rho}). \\ & \mathcal{P} \text{ is one of the groups} \\ & \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ * & * \\ * & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ * & * & * \\ * & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ * & * & * \\ * & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ * & * & * \\ * & * \end{pmatrix} \end{aligned}$$

called standard parabolics.

Decomposing Algebraic Groups

$$G(\mathbb{A}) = P(\mathbb{A})K,$$

$$\blacktriangleright \ K = \mathcal{O}_3(\mathbb{R}) \times \prod_{\rho} \mathrm{GL}_3(\mathbb{Z}_{\rho}).$$

These ones are

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ * & * \\ * & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ * & * & * \\ * & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ * & * \\ * & * \end{pmatrix}$$

called maximal proper standard parabolics.

Levi and Unipotent Subgroups

Each parabolic P can be written as

P = MU,

where

Domains

For a fixed P = MU, consider functions on

 $U(\mathbb{A})M(\mathbb{Q})\backslash G(\mathbb{A})/K \to \mathbb{C},$

Note that if P = G we get functions defined on

 $G(\mathbb{Q}) \setminus G(\mathbb{A}) / K \cong G(\mathbb{Z}) \setminus G(\mathbb{R}) / \mathcal{O}_3(\mathbb{R})$

Compare the SL_2 case,

 $\operatorname{SL}_2(\mathbb{Z}) \setminus \operatorname{SL}_2(\mathbb{R}) / \operatorname{SO}_2(\mathbb{R}) \cong \operatorname{SL}_2(\mathbb{Z}) \setminus \mathcal{H},$

(roughly) the domain of modular forms.

Interesting Functions

By analogy consider functions

$$\phi: U(\mathbb{A})M(\mathbb{Q})\backslash G(\mathbb{A})/K \to \mathbb{C},$$

with properties:

- Smooth
- Moderate growth

Some invariance under $z \in \text{Lie}(G(\mathbb{R}))$

$$z.\phi(g) = \frac{d}{dt}\phi(g.e^{tz})|_{t=0}.$$

Call these (roughly) Automorphic forms for GL_3 .

From now fix
$$P = \begin{pmatrix} * & * & * \\ & * & * \\ & * & * \end{pmatrix} = MU$$
 as above.

Easy to check

 $\operatorname{Hom}_{\operatorname{AlgGroup}}(M, \operatorname{GL}_1) \cong \mathbb{Z}^2$

As groups. They are maps of the form $(i,j)\in\mathbb{Z}^2$

$$(i,j): m = \begin{pmatrix} e & & \\ & a & b \\ & c & d \end{pmatrix} \mapsto e^{i} \det \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{j}$$

For ϕ as above, $g = muk \in M(\mathbb{A})U(\mathbb{A})K = G(\mathbb{A})$ and $(s_1, s_2) \in \mathbb{C}^2$ define

$$\begin{aligned} (s_1, s_2) .\phi(g) &:= \left(\prod_{\nu} |(1, 0)(m_{\nu})|_{\nu}^{s_1} |(0, 1)(m_{\nu})|_{\nu}^{s_2} \right) \phi(g) \\ &= \left(\prod_{\nu} |e|_{\nu}^{s_1} \left| \det(ad - bc) \right|_{\nu}^{s_2} \right) \phi(g) \end{aligned}$$

Eisenstein Series

If
$$g \in G(\mathbb{A}), s \in \mathbb{C}^2$$
 then
$$E(s,\phi)(g) \ := \ \sum_{\gamma \in P(\mathbb{Q}) \backslash G(\mathbb{Q})} s.\phi(\gamma g),$$

is the Eisenstein series.

Averages $U(\mathbb{A})M(\mathbb{Q})$ invariance into $G(\mathbb{Q})$ invariance.

Has a meromorphic continuation in the *s* variable.

At holomorphic points it is also automorphic

 $E(s,\phi): G(\mathbb{Q}) \backslash G(\mathbb{A}) / K \to \mathbb{C}.$

Constant Term

 ϕ automorphic form, P=MU parabolic, can take the constant term along P

$$\phi_{P}: M(\mathbb{A}) \to \mathbb{C},$$

$$\phi_{P}(m) := \int_{U(\mathbb{Q}) \setminus U(\mathbb{A})} \phi(um) \mathrm{d}u.$$

This is also automorphic.

Constant Terms of Eisenstein Series

Theorem ([MW95], I.4.10)

An Eisenstein series defined from P has a pole at s if and only if its constant term along P has a pole at s.

This is helpful because constant terms can be simpler.

Example

Repeat the setup for ${\it G}={\rm Sp}_{2n}$ then along maximal parabolics ${\it P}$ and for nice ϕ

$$E_P(\phi, s) = \phi_P + M(\omega, s)\phi$$

• $\omega \in G(\mathbb{Q})$ is explicit.

$$M(w,s)(\phi)(g) := \int_{\left(U(\mathbb{Q})\cap wU(\mathbb{Q})w^{-1}\right)\setminus U(\mathbb{A})} s.\phi(w^{-1}ug) \mathrm{d}u$$

which has relations to L-functions ...

FIN

C. Moeglin and J. L. Waldspurger.

Spectral Decomposition and Eisenstein Series: A Paraphrase of the Scriptures.

Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1995.