Poles of Eisenstein Series

Riley Moriss Superviser: Chenyan Wu

Expectations

Thesis: Several computations of constant terms of interesting functions to investigate their poles.

Talk:

- \blacktriangleright Explain what an interesting function is.
- \blacktriangleright Explain what a constant term is.
- \blacktriangleright Explain how constant terms are related to the poles of the functions.
- \blacktriangleright Explain how L-functions arise in constant terms of Eisenstein series.

Expectations

Thesis: Several computations of constant terms of interesting functions to investigate their poles.

Talk: An example of part of the theory.

Everything is over the field Q . p is a prime. The **finite adeles** are

$$
\mathbb{A}_{\text{fin}} \ := \ \prod_{p}^{\prime} \mathbb{Q}_p \ := \ \{ (x_p)_p \in \prod_{p} \mathbb{Q}_p : x_p \in \mathbb{Z}_p \text{ all but finitely many } p \}
$$

The **adeles** are

 \mathbb{A} := $\mathbb{R} \times \mathbb{A}_{fin}$

Algebraic Groups

 $G = GL_3 : Alg_{\mathbb{Q}} \rightarrow Groups$

 $R \mapsto 3 \times 3$ invertible matrices with R entries.

Decomposing Algebraic Groups

$$
G(\mathbb{A})=P(\mathbb{A})K,
$$

►
$$
K = O_3(\mathbb{R}) \times \prod_p GL_3(\mathbb{Z}_p).
$$

\n► *P* is one of the groups
\n
$$
\begin{pmatrix}\n* & * & * \\
* & * & * \\
* & * & * \\
* & * & *\n\end{pmatrix}, \quad\n\begin{pmatrix}\n* & * & * \\
* & * & * \\
* & * & *\n\end{pmatrix}, \quad\n\begin{pmatrix}\n* & * & * \\
* & * & * \\
* & * & *\n\end{pmatrix}, \quad\n\begin{pmatrix}\n* & * & * \\
* & * & * \\
* & * & *\n\end{pmatrix}
$$

called **standard parabolics**.

Decomposing Algebraic Groups

$$
G(\mathbb{A})=P(\mathbb{A})K,
$$

$$
\blacktriangleright \ \mathsf{K}=\mathrm{O}_3(\mathbb{R})\times \prod_{\mathsf{p}}\mathrm{GL}_3(\mathbb{Z}_{\mathsf{p}}).
$$

 \blacktriangleright These ones are

$$
\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ & * & * \\ & * & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ * & * & * \\ & * & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ & * & * \\ & * & * \end{pmatrix}
$$

called **maximal proper standard parabolics**.

Levi and Unipotent Subgroups

Each parabolic P can be written as

 $P = MU$

where

Domains

For a fixed $P = MU$, consider functions on

 $U(\mathbb{A})M(\mathbb{Q})\backslash G(\mathbb{A})/K\to\mathbb{C},$

Note that if $P = G$ we get functions defined on

 $G(\mathbb{Q})\backslash G(\mathbb{A})/K \cong G(\mathbb{Z})\backslash G(\mathbb{R})/O_3(\mathbb{R})$

Compare the $SL₂$ case,

$$
\mathrm{SL}_2(\mathbb{Z})\backslash \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2(\mathbb{R})\cong \mathrm{SL}_2(\mathbb{Z})\backslash \mathcal{H},
$$

(roughly) the domain of modular forms.

Interesting Functions

By analogy consider functions

$$
\phi: U(\mathbb{A})M(\mathbb{Q})\backslash G(\mathbb{A})/K \to \mathbb{C},
$$

with properties:

- \blacktriangleright Smooth
- \blacktriangleright Moderate growth
- Some invariance under $z \in \mathrm{Lie}(G(\mathbb{R}))$

$$
z.\phi(g) = \frac{d}{dt}\phi(g.e^{tz})|_{t=0}.
$$

Call these (roughly) **Automorphic forms** for GL₃.

From now fix
$$
P = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} = MU
$$
 as above.

Easy to check

 $\mathrm{Hom}_{\mathrm{AlgGroup}}(M,\mathrm{GL}_1)\cong\mathbb{Z}^2$

As groups. They are maps of the form $(i,j)\in\mathbb{Z}^2$

$$
(i,j): m = \begin{pmatrix} e & & b \\ & a & b \\ & & c & d \end{pmatrix} \mapsto e^i \det \begin{pmatrix} a & b \\ c & d \end{pmatrix}^j
$$

For ϕ as above, $g = muk \in M(\mathbb{A})U(\mathbb{A})K = G(\mathbb{A})$ and $(s_1, s_2) \in \mathbb{C}^2$ define

$$
(s_1, s_2) \cdot \phi(g) := \left(\prod_{\nu} |(1, 0)(m_{\nu})|_{\nu}^{s_1} |(0, 1)(m_{\nu})|_{\nu}^{s_2} \right) \phi(g)
$$

$$
= \left(\prod_{\nu} |e|_{\nu}^{s_1} |\text{det}(ad - bc)|_{\nu}^{s_2} \right) \phi(g)
$$

Eisenstein Series

If $g \in G(\mathbb{A}), s \in \mathbb{C}^2$ then $E(s,\phi)(g) = \sum_s s.\phi(\gamma g),$ $\gamma \in P(\mathbb{Q}) \backslash G(\mathbb{Q})$

is the **Eisenstein series**.

Averages $U(A)M(Q)$ invariance into $G(Q)$ invariance.

Has a meromorphic continuation in the s variable.

At holomorphic points it is also automorphic

 $E(s, \phi) : G(\mathbb{Q}) \backslash G(\mathbb{A})/K \to \mathbb{C}.$

Constant Term

 ϕ automorphic form, $P = MU$ parabolic, can take the **constant term along** P

$$
\phi_P: M(\mathbb{A}) \to \mathbb{C},
$$

$$
\phi_P(m) := \int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \phi(um) \mathrm{d}u.
$$

This is also automorphic.

Constant Terms of Eisenstein Series

Theorem([\[MW95\]](#page-16-0), I.4.10)

An Eisenstein series defined from P has a pole at s if and only if its constant term along P has a pole at s.

This is helpful because constant terms can be simpler.

Example

 \blacktriangleright

Repeat the setup for $G = \mathrm{Sp}_{2n}$ then along maximal parabolics P and for nice ϕ

$$
E_P(\phi,s)=\phi_P+M(\omega,s)\phi
$$

 \blacktriangleright $\omega \in G(\mathbb{Q})$ is explicit.

$$
M(w,s)(\phi)(g) \ := \ \int_{\left(U(\mathbb{Q})\cap wU(\mathbb{Q})w^{-1}\right)\backslash U(\mathbb{A})} s.\phi(w^{-1}ug)\mathrm{d}u
$$

which has relations to L-functions ...

FIN

C. Moeglin and J. L. Waldspurger.

Spectral Decomposition and Eisenstein Series: A Paraphrase of the Scriptures.

Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1995.